Q1.

Q2.

6 (a) (i) one correct atom circled

(if >1 are circled, all must be correct) [1]

(ii) 5 (chiral centres)

[1] [2]

(b) (i) sodium metal

(charges not needed) [1] + [1]

(ii) Br₂(aq)

[1]

(iii) NaOH(aq)

(charges not needed) [1]

(iv) CH₃COC1

[1]+[1]

(v) hot acidified K2Cr2O7

[1] (if one or more OH groups have been omitted in (ii), (iii) or (v) deduct [1] mark) [7]

[Total: 9]

Q3.

```
(a) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH
                                           CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH(OH)CH<sub>3</sub>
                                                                                     CH<sub>3</sub>CH<sub>2</sub>CH(OH)CH<sub>2</sub>CH<sub>3</sub>
                                                         B
        all three (any order)
                                                                                                                   [2]
        (2 \text{ only } = [1])
                                                                                                                          [2]
   (b) B above (may be different letter) ([0] if more than one compound stated)
                                                                                                                   [1]
                                                                                                                        [1]
   (c) (i) B above (may be different letter) ([0] if more than one compound stated)
                                                                                                                   [1]
        (ii) (pale) yellow ppt.
                                                                                                                   [1]
        (iii) CHI<sub>3</sub> + CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>Na or anion (no credit for the acid, RCO<sub>2</sub>H)
                                                                                                            [1]+[1]
                                                                                                                          [4]
   (d) A → CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>H
                                                                                                                  [1]
        B → CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COCH<sub>3</sub>
                                                                                                                  [1]
        C → CH<sub>3</sub>CH<sub>2</sub>COCH<sub>2</sub>CH<sub>3</sub> (letters may differ)
                                                                                                                   [1] [3]
(e) (i) (C_8H_{10}O_5)_n \longrightarrow 5n H_2 + 5n CO + n C correct species and the 5:5:1 ratio [1]
                                  (allow n5 instead of 5n) balancing, i.e. multiplying by n
                                                                                                               [1]
     (ii) \Delta H = 7(1080) + 15(436) - 6(350) - 16(410) - 14(460)
                = -1000 kJ mol<sup>-1</sup>
          4 correct values from DB (in bold italics above)
          correct multipliers
                                                                                                               [1]
          correct signs and arithmetic
                                                                                                               [1]
          (correct answer = [3])
          Some ecf values for [2] marks (i.e. 1 error):
                                                                       for [1] mark (i.e. 2 errors):
          +1000 (signs reversed)
          -1350 (7 x (C-C) instead of 6)
                                                                       +1350
          +2220 (7 x O-H instead of 14)
                                                                       -2220
          -1410 (17 C-H instead of 16)
                                                                       +1410
          The omission of a type of bond (C-C is the most common one that is omitted) forfeits
          2 marks, in addition to any other errors there may be.
                                                                                                                      [5]
                                                                                                            [Total: 15]
```

Q4.

6	(a)	(i)	SOCk or PCk or PCk	(1)	
		(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	[2]
	(b)	(i)	A is C ₈ H ₅ CO ₂ C ₂ H ₅ B is C ₆ H ₅ CONH ₂	(1) (1)	
		(ii)	ester amide	(1) (1)	
		(iii)	nucleophilic substitution / condensation	(1)	[5]
	(c)	(i)	C is CICOCOCI D is CICOCOCOCI	(1) (1)	
		(ii)	hydrogen bonding	(1)	
		(iii)	because it's an amide or not an amine or its lone pair is delocalised (over C=O) or less available due to electronegative oxygen [NOT: E is neutral, but the diamine is basic]	(1)	
		(in)			[6]
		(IV)	condensation (polymer) or polyester	(1)	[5]
			П	Total:	121

Q5.

6 (a) (i) aqueous alkaline iodine or I₂ + OH⁻(aq) allow NaClO + KI

[1]

(ii) CH3CO- or CH3CH(OH)-

[1]

(iii) Pale yellow ppt. or antiseptic smell

[1]

(iv)

compound	result
CH₃OH	×
CH₃CH₂OH	~
CH₃CHO	~
CH₃CO₂H	×
⊘ −сно	×
О сосн₃	4

· · · · · [3]

(b) (allow displayed, skeletal or structural formulae)

$$E$$
 E
 F
 CO_2H
 CO_2

(c) (allow displayed, skeletal and structural formulae)
 Must be consistent with F

OH
$$CO_2H$$
 CO_2H CO_2H CO_2H CO_2H CO_2H CO_2H allow for G (only allow mark for G if G is the 3-OH acid)

(N.B. letters H, J, K can be swapped around)

 $(G + H + J + K): 4 \times [1]$

geometrical or cis-trans isomerism

[1]

[Total: 14]

Q6.

4 (a) (i) (allow displayed, structural or skeletal formula)

chain [1] repeat unit [1]

- (ii) C should be CH₂=CHOH (or skeletal formula) [1]
- (iii) C is CH₃CH=O (or skeletal formula) [1]
- (iv) e.g. add (2,4-)DNPH or DNP or Brady's reagent orange or red ppt forms (NOT yellow) ecf [1] (or could use Fehling's or Tollens', or H⁺ + Cr₂O₇²⁻: orange to green, or H⁺ + MnO₄⁻: purple to colourless)
- (b) (i) (allow displayed, structural or skeletal formula)

correct repeat unit bracketed (any 3 atoms in chain) [1]

- (ii) ester [1]
- (iii) E is CH₃CH₂CH(OH)CO₂H (or skeletal structure etc.)(2-hydroxybutanoic acid) allow ecf here from the formula of the repeat unit shown in (b)(i) [1]
- (iv) condensation (polymerisation) [1]
- (v) they have the same "molecular" formula or C₄H₆O₂ (do NOT allow empirical formula) or same no. and type of atoms or same functional group or both are esters or they are isomers
 [1]
 [5]
- (c) (i) optical isomerism (or chiral) [1]

(ii)

F

G

(letters may be reversed) (allow ecf from E, also allow ecf for G from E)

[1] + [1]

(letters may be reversed)(allow ecf from E, also allow ecf for G from F) [1] + [1]

cis-trans or geometrical isomerism [1]

[Total: 15]

5	(a)	acidities: CHCl ₂ CO ₂ H > CH ₂ ClCO ₂ H > CH ₃ CO ₂ H	[1]
		due to Cl being (more) electronegative/electron withdrawing (than H).	[1]
		this stabilises the anion or weakens the O-H bond	[1]
			[3]

first compound	second compound	test	observation with first compound	observation with second compound
NH2	NH;	Br ₂ (aq) [not (I)]	none	decolourises/ white ppt.
		NaNO ₂ + HC <i>l or</i> HNO ₂ followed by phenol (+ NaOH)	none	yellow/orange/red ppt.
	CH₃COCH₂C <i>l</i>	AgNO ₃ (aq)	(immediate) white ppt.	none
CH ₃ CH ₂ COCI		add H₂O/ROH	steamy/misty/ white fumes	none
		(2,4-)DNPH	none	orange ppt.
		I ₂ /OH	none	yellow ppt./ antiseptic smell
	СН₃СОСН₃	I ₂ /OH	none	yellow ppt./ antiseptic smell
011 011 0110		Fehling's/Benedict's solution + warm	red ppt.	none
CH₃CH₂CHO		Tollens' reagent + warm	silver/black ppt.	none
		Cr ₂ O ₇ ²⁻ + H ⁺ + warm	turns green	no change
		MnO ₄ ⁻ + H ⁺ + warm	decolourises	no change

three correct reagents	[3]
three correct positive results	[3]
three × 'none'	[1]
	[7]

(ii) (in parts (ii) and (iii), allow structural formulae instead of skeletal formulae) [1] + [1] or NaO

(N.B. letters E and F may be reversed.)

(iv) F (or E, i.e. the alphatic di-acid) should be changed to something less flexible, e.g.

HO₂C

or HO₂C-CO₂H

HO₂C

CO₂H

$$O_2C$$
 O_2H O_2C O_2C

(any size ring with n < 6; any orientation)

(but not HO2C(CH2)3CO2H or longer)

(ignore side chains: length of chain is the important feature)

or allow a tri-carboxylic acid (or triphenol), i.e. one that will allow cross linking

[1] [6]

[Total: 16]

Q8.

5 (a) (i)

two or three centres correctly identified [1]

four centres correctly identified [2]

- (ii) $C_{16}H_{18}O_9$ [1]
- (iii) 3 moles of H₂ [1]
- (iv) in cold: 3 moles of NaOH [1]
 - on heating: 4 moles of NaOH [1] [6]
- (b) (i) hydrolysis

- [1]
- (ii) alkene or C=C [1]
- was the second of the second o
- (iii) with Na₂CO₃(aq): carboxylic <u>acid</u> [1] with Br₂(aq): phenol [1]

(OH can be at the 3, 4, or 5 positions, but not the 2 or 6 positions)

G (ring subst. allow 2 or 3 Br in ring) (addition to C=C: allow one of the aliphatic Br to be OH, but not both)

(v) geometrical or cis-trans or E-Z

[1]

[1]

[1]

skeletal or structural [1]

[9 max 8]

(c)
$$M_1(E) = 180$$
, so $0.1 \text{ g} = 1/1800 (5.56 \times 10^{-4}) \text{ mol}$

[1]

[1]

3 mol NaOH react with 1 mol of E, so $n(NaOH) = 3/1800 = 1/600 \text{ mol} = 1.67 \times 10^{-3} \text{ mol}$

volume of 0.1M NaOH = 1000/(600 x 0.1) = 16.7 cm³

[1] [3]

[Total: 17]

Q9.

5	(a)	nucle	ophilic substitu	ition (NOT eli	mination, NOT condensation)	[1] 1
	(b)		CH ₂ CO ₂ H (or na n, formula takes p		SOCl ₂ or PCl ₃ or PCl ₃ or P + Cl ₂	[1] 2
	(c)	(i)	CH ₃ CH ₂ CN	(if CN is she	own in full, it must be C≡N, not C-N)	[1]
		(ii)	NaCN or KC (NOT CN: 1	N + heat/warn mention of aci	m/reflux/T between 50° and 100° (in ethanol) id negates mark)	[1]
		(iii)	H ₂ + Ni/Pt/P	d or LiAlH4 o	or Na + ethanol (NOT NaBH ₄)	[1] 3
			-		#	
	(d)	(i)	condensation	i.	22	[1]
		(ii)	H ₂ N-C ₆ H ₄ -N [allow		HO ₂ C-C ₆ H ₄ -CO ₂ H or ClCO-C ₆ H ₄ -COCl at NOT CO ₂ HC ₆ H ₄ CO ₂ H]	[1]
		(iii)	Strong forces	between chai	ins or chains are rigid/inflexible	[1]
		(iv) <u>w</u>	arm/heat/boil/r		/dilute acid/H ⁺ /H ₂ SO ₄ or base/OH ⁻ /NaOH ith conc HCl for [1] mark]	[1]
					2 0	5
					Tot	tal: 11

Q10.

Q11.

5 (a) (i) AlCl₃/FeCl₃/Al/Fe/l₂ (+ heat) [aq negates] (N.B. NOT AlBr₃ etc.) [1] (or names) (ii) (sun)light/hf/UV (aq negates) [1] 2 (b) SOCl2/PCl3/PCl5 [aq negates] [1] (or names) 1 (c) (i) C > B > A (i.e. a mark in the penultimate box) [1] (ii) (acyl chloride fastest) highly δ + carbon atom joined to 2 electronegative atoms addition-elimination mechanism is possible or [1] (aryl chloride slowest) delocalisation of lone pair over ring ⇒ stronger C-Cl bond impossibility of 'backside' attack on the C-Cl bond [1] 3 or

(d) C₆H₅-CO₂C₆H₅ C₆H₅-CONHCH₃ C₆H₅-CO₂H

[1] [1] [1]

OR

3

Total 9

Q12.

Q14.

6 (a)

(1) for each centre - more than 2 centres shown deduct 1 mark

[2]

(b) (i) step 1 LiAlH₄ or NaBH₄ or Na + ethanol or H₂ + Ni (1) step 2 heat with Al₂O₃ / porous pot or conc. H₂SO₄ / H₃PO₄ (1)

(ii)

L (1) (letters may be reversed)

M (1)

[4]

(c) (i) M (no mark)

(ii)

i.e. 3,7-dimethyl-6-oxo-octanoic acid (1)

(iii) 2,4-DNPH (1) orange ppt. with P (none with N) (1) Mark ecf from candidates' P

[3]

(d)

2 curly arrows (1) carbocation intermediate + Cl⁻ (1)

lone pair on CI and last curly arrow (1)

[3]

[Total: 12]

Q15.

(a) reaction I: reduction or hydrogenation (1) reaction II: oxidation or redox (1) [2] (b) thymol: Br2(aq)(1) decolourises or white ppt (1) or NaOH(aq)(1) dissolves (1) or FeCl₃(aq) (1) violet/purple (colour) (1) menthol: Cr₂O₇²/H⁺ (1) orange → green (1) Lucas test or ZnCl2/HCl(1) cloudy or white ppt (1)

[Total: 8]

[6]

Q16.

- 5 (a) (i) C=C double bonds / alkenes
 - (ii) -OH groups / accept alcohols or acids

menthone: 2,4-DNPH/Brady's reagent (1) orange ppt (1)

- (iii) CH₃CO- or CH₃CH(OH)- groups
- (iv) carbonyl, >C=O, groups / accept aldehydes and ketones 4 × [1]

 [4]

(c) isomers of C

OH

Cis trans

correct structure (excl. stereochemistry) [1]
cis and trans drawn correctly [1]
type of isomerism is cis-trans or geometrical isomerism [1]

[Total: 9]

Q17.

5 (a) Alkanes are non-polar or have no dipole or C-H bonds are strong or C and H have similar electronegativities

- [1] [1]

- (b) (i) (free) radical substitution or substitution by homolytic fission
- [1]

Ck ----> 2Cl° (ii) initiation:

CH₃CH₂CH₂CH₂CI (or isomer)

[1]

 $\begin{array}{c} C_1 + C_2 H_6 \longrightarrow C_2 H_5 + HC_1 \\ C_2 H_5 + C_1 / 2 \longrightarrow C_2 H_5 C_1 + C_1 \end{array}$ propagation:

[1]

termination:

all 3 names [1]

formed by
further substitution
(termination of 2 ×) C ₂ H ₅ *

accept in the "formed by" column the formulae of radicals that will produce the compound in the "by-product" column, or the reagents, e.g. C₄H₉* + C& or C₄H₉* + Cl or C4H10 + C12 (giving CH3CH2CH2CH2CI).

substitution of C₄H₁₀ by-product

do not allow anything more CI-substituted than dichlorobutane.

N.B. C₂H₅Cl is the major product, not a by-product, so do not allow C₂H₅Cl

(iv) J/K = 2.3: 1 or 7:3 or 21:9

(reason: straightforward relative rate suggests 21:1, but there are 9 primary to 1 tertiary, so divide this ratio by 9. 21/9 = 2.33) allow [1] mark if J/K ratio is given as 21:1;

[10]

(c)

2 chiral atoms identified correctly, even in incorrect structures

4 isomers 4 × [1]

[1] + [1]

[max 5]

[Total: 16]

Q18.

4 (a) K₂Cr₂O₇ + H⁺ + heat under reflux

(b) nucleophilic substitution [1]

(c) heat under reflux + aqueous HCI [1]

(d) alkene [1]

(e) amide or ester [1]

[5]

capsaicin

(f)

H₃C

CONH

OCH

C (cis/trans)

$$HO_2C$$
 CO_2H
 H_3C
 CO_2H
 E

alternative structure for capsaicin

ecf 5 × [1]

[5]

[1]

[Total: 10]

Q19.

4 (a) (i) ketone/carbonyl [NOT aldehyde]

[1]

(ii) carboxylic acid (name of group needed. NOT 'carboxyl')

[Total: 2]

(b) (i) (allow structural, displayed or skeletal formulae in (b), (c) and (e))

(ii) heat/reflux/boil/hot/T>60°C in H₃O⁺ or aqueous/dilute H⁺/HCl/H₂SO₄ (NOT HNO₃) [1]

[Total: 4]

(c) (i) reduction/redox (allow nucleophilic addition or hydrogenation, as appropriate from (ii))[1]

(iii) HO₂C CO₂H

[Total: 3]

[1]

(d) (i) alkene/C=C/C-C double bond [1]

(ii) phenol and alkene/C=C/C-C double bond [1]

[Total: 2]

allow H₃00 CHO CHO OH

complete formula [2]

[Total: 2]

[TOTAL: 13]